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Abstract
We introduce a modified version of an ODE originally introduced by Painlevé,
and we show that it possesses a lot of periodic solutions. We also use
(a simplified version of) it to verify the efficacy of an iterative approach
used elsewhere, in more general contexts, to evince analogous properties of
periodicity of (systems of) nonlinear ODEs.

PACS number: 02.30.Hq

1. Introduction

At the beginning of last century Paul Painlevé (see [1], as quoted in [2]) introduced the nonlinear
autonomous ODE

w′′ = w′2 [(1 − w2) (1 − k2w2)]−1/2

×{−λ−1 + [(1 − w2) (1 − k2w2)]−1/2 w [2 k2w2 − (1 + k2)]} (1.1)

and pointed out that it features the general solution

w(z) = sn[λ log(A z − B), k]. (1.2)

1.1. Notation

w ≡ w(z) is the dependent variable, z is the independent variable, primes indicate (here and
throughout) differentiations with respect to the (complex) independent variable z, w′(z) ≡
dw (z) /dz, k and λ are arbitrary constants, sn(u, k) is the first Jacobian elliptic function (see,
for instance, [3]), and A, B are two arbitrary constants, the presence of which in (1.2) shows
that this formula, (1.2), indeed provides the general solution of (1.1).

This ODE, (1.1), is a classical, much quoted, example of nonlinear ODE a simple local
analysis of which only evidences poles as singularities in the finite part of the complex z-plane,
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but which in fact features, at the point z = B/A, an essential singularity at which the value of
the solution itself is undefined; hence it is a (standard) example of an (autonomous!) nonlinear
ODE that, in contrast to the expectation suggested by such a local analysis, does not possess the
‘Painlevé property’ to feature only meromorphic solutions, namely solutions the singularities
of which in the (finite part of the) complex plane of the independent variable z are only poles.

The main purpose of the present paper is to exhibit the following modified version of (1):

f̈ − iω ḟ = ḟ 2 [(1 − f 2) (1 − k2f 2)]−1/2

×{ − λ−1 + [(1 − f 2) (1 − k2f 2)]−1/2 f [2 k2f 2 − (1 + k2)]} (1.3)

which features the additional real (indeed, without loss of generality, positive) constant ω, and
of course reduces to (1.1), up to notational changes (see below), for ω = 0 (but we hereafter
assume ω > 0). We hereafter consider the solutions f ≡ f (t) of this modified ODE, (1.3),
as functions of the new real independent variable t , and of course superimposed dots in (1.3)
and throughout denote differentiations with respect to this variable t , i.e. ḟ (t) ≡ df (t)/dt .

Our main result is to observe that this modified equation (1.3), features a lot of periodic
solutions with period T ,

T = 2π/ω (1.4)

f (t + T ) = f (t) (1.5)

for arbitrary values of k and λ, and moreover that all its nonsingular solutions are periodic,
either with period T , see (1.4), or with a period T̃ = q T which is an integral multiple of T if
the constants λ and k are related by either one of the following formulae:

2π iλ = 4K(k)p/q (1.6a)

2πλ = 2K ′(k) p/q. (1.6b)

Here and below K(k) and K ′(k) are the complete elliptic integrals (in standard notation, see
for instance [3]), and p, q are two coprime integers (without loss of generality we assume q

to be positive).
In the following, merely for the ease of presentation, we refer to the new independent

variable t as ‘time’, and we therefore consider (1.3) as an evolution ODE in real time. In this
context we will also rephrase our main result in terms of the initial-value problem for (1.3).

As shown below, the main finding reported in this paper is a simple consequence of the
change of independent variable that relates (1.1) to (1.3). This ‘trick’, which was originally
noted in the context of a specific many-body problem [4], has recently been shown to be
applicable in a much more general context, namely to entire classes of nonlinear evolution
equations (both ODEs and PDEs), to yield modified versions of them that possess lots of
periodic solutions [5–10]. The main reason to apply it here to (1.1) is because of the historical
relevance of this ODE [1, 2], and moreover because it is instructive to verify in the context of
this single, solvable ODE—or rather of a special case of it, see below—the type of singularity
analysis that we apply elsewhere [10], the conclusions of which, concerning the periodicity of
modified equations, can in the present case be confirmed by taking advantage of the availability
of the general solution in explicit closed form (see (1.2) and below).

In section 2 the ‘trick’ is introduced, and our main result is proven and discussed in the
context of the initial-value problem for the evolution ODE (1.3). In the following section 3
two simpler nonlinear ODEs are considered (corresponding essentially to (1.3) with k = 1
respectively k = 0), and in section 4 the analysis used elsewhere in a more general context [10]
is applied to the first of these simplified equations and it is shown to predict correctly the
periodicity properties indeed displayed by its general solution.
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2. Main result

We exploit the following change of (independent) variable:

f (t) = w(z) (2.1a)

z = [exp(iω t) − 1]/(iω) (2.1b)

which clearly entails

ḟ (t) = exp(iω t)w′(z) (2.2a)

f̈ − iω ḟ (t) = exp(2iω t)w′′(z) (2.2b)

hence clearly transforms (1.1) into (1.3). Note that this change of independent variable, (2.1),
also entails the following simple relations between the ‘initial data’ for (1.1) and (1.3):

f (0) = w(0) ḟ (0) = w′(0). (2.3)

It is therefore clear, see (1.2), that the general solution of (1.3) reads

f (t) = sn(λ log {[a exp(iω t) − b]/(iω)}, k) (2.4a)

with a = −iA/ω, b = B − iA/ω two a priori arbitrary constants, related to the initial data as
follows:

f (0) = sn(λ log [(a − b)/(iω)], k) (2.5a)

ḟ (0) = iω λ a (a − b)−1 {1 − [f (0)]2}1/2{1 − k2[f (0)]2}1/2
. (2.5b)

It is now clear from (2.4a) that the solution f (t) of (1.3), considered as a function of the
real variable t , has the following behaviour. If

|a| < |b| (2.6a)

then f (t) is periodic in t with period T , see (1.4) and (1.5); and it is clear from (2.5) that
the solutions f (t) of (1.3) featuring this periodicity property emerge from a set of initial data
f (0), ḟ (0) having nonvanishing measure in the phase space of such initial data (because (2.6a)
is an inequality). If instead

|a| > |b| (2.6b)

then it is convenient to rewrite the solution (2.4a) as follows:

f (t) = sn(iλωt + λ log{[a − b exp(−iωt)]/(iω)}, k) (2.4b)

and this shows that in this case (2.6b) the solution f (t) is not periodic in t , unless (1.6a)
or (1.6b) hold, in which case f (t) is again periodic in t , but with period T̃ = q T (see
table 5 in section 13.16 of [3]). Clearly the two sets of initial data that correspond (via (2.5))
to the inequalities (2.6a) respectively (2.6b) are complementary, and they exhaust the entire
phase space of initial data f (0), ḟ (0) except for a lower-dimensional set of data characterized
(via (2.5)) by the equality

|a| = |b|. (2.6c)

To this lower-dimensional set of initial data there corresponds a solution (2.4) that becomes
singular at the real time ts defined mod(T ) by the formula

ts = −(i/ω) log(b/a). (2.7)

Note, however, that even solutions which emerge from either one of the two
complementary sets of initial data that correspond via (2.5) to the two inequalities (2.6a),
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(2.6b) (namely, that do not satisfy via (2.5) the equality (2.6c)) might become singular (in the
guise of hitting a pole at t = tp mod (T )) if the equation

a exp(iω tp) = b + iω exp{[2mK(k) + (2n + 1)iK ′(k)]/λ} (2.8)

admits a real solution tp for some values of the two (arbitrary) integers m, n (here of course,
as in (1.6), K(k) and K ′(k) are the complete elliptic integrals, see section 13.8 of [3], and we
rely again on the information in table 5 of section 13.16 of [3]).

3. Special cases

For k = 1 the ODE (1.3) takes the simpler (analytic!) form

g̈ − iω ġ = ġ2(2g + 1)/(g2 − λ2) (3.1)

where for notational convenience we set g = λ f . The general solution of this ODE reads

g(t) = λ(u − 1)/(u + 1) (3.2a)

u = {[a exp(iωt) − b]/(iω)}2λ (3.2b)

and it entails the following relations among the two (a priori arbitrary) constants a, b and the
initial data g(0), ġ(0):

a = ġ(0) [λ2 − g2(0)]−1[λ + g(0)]1/(2λ)[λ − g(0)]−1/(2λ) (3.3a)

b = {−iω + ġ(0) [λ2 − g2(0)]−1}[λ + g(0)]1/(2λ) [λ − g(0)]−1/(2λ). (3.3b)

It is again clear that the solution (3.2) is periodic in t with period T , see (1.4) and (1.5),
if |a| < |b|, and that it is not periodic in t if instead |a| > |b| unless 2 λ = p/q with p and
q coprime integers (and, say, q positive), in which case g(t), see (3.2), is periodic in t with
period T̃ = q T . Clearly each of these two regimes corresponds, via (3.3), to a set of initial
data having nonvanishing measure in the phase space of such initial data. These two sets of
initial data are separated by a lower-dimensional set of such data characterized, via (3.3), by
the equality |a| = |b|.

Likewise, for k = 0 equation (1.3) takes the simpler (but still nonanalytic) form

f̈ − iω ḟ = −ḟ 2(1 − f 2)−1[f + λ−1(1 − f 2)1/2]. (3.4)

The general solution of this ODE reads

f (t) = (v − v−1)/(2i) (3.5a)

v = {[a exp(iωt) − b]/(iω)}iλ. (3.5b)

The two constants a, b are now related to the initial data as follows:

f (0) = {[(a − b)/(iω)]iλ − [(a − b)/(iω)]−iλ}/(2i) (3.6a)

ḟ (0) = (λa/2){[(a − b)/(iω)]iλ−1 + [(a − b)/(iω)]−iλ−1}. (3.6b)

Clearly the phenomenology described above, as regards the behaviour of the solutions as
functions of the real independent variable t , applies again, up to modifications the detailed
analysis of which is left as an easy exercise for the diligent reader.

4. Determination of periodic behaviour via branch point analysis

In this section we show how information on the periodic behaviour, as function of the real
‘time’ variable t , of solutions g ≡ g(t) of the (analytic) nonlinear ODE (3.1)

g̈ − iωġ = ġ2(2g + 1)/(g2 − λ2) (4.1)
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can be obtained from an analysis of the analytic structure of the solutions of the ODE related
to it via the transformation (2.1), namely from the ODE

w′′ = w′2(2w + 1)/(w2 − λ2). (4.2)

Our motivation for performing this exercise is not to rediscover findings which have been
already conclusively established in the preceding section 3, but rather to verify that the route
used in this section leads to the correct results—a conclusion we consider significant to sustain
our confidence in analogous findings arrived at by analogous treatments in other contexts
where, in contrast to the present case, exact explicit solutions are not available to confirm the
validity of the findings obtained in this manner [10].

Let us rewrite in the present notation the change of (independent) variable, analogous
to (2.1), which relates (4.1) to (4.2),

g(t) = w(z) (4.3a)

z = [exp(iωt) − 1]/(iω) (4.3b)

as well as the relations analogous to (2.3) among the initial data for (4.1) and (4.2),

g(0) = w(0) ġ(0) = w′(0). (4.4)

It is clear from these formulae that to solve the initial-value problem for (4.1) one can solve,
essentially with the same initial data, see (4.4), the initial-value problem for (4.2), obtain
thereby the solution w(z), and then use (4.3) to get the solution g(t). One then notes that,
as the real ‘time’ variable t varies from 0 to T (see (1.4)), the complex variable z travels full
circle over the circular contour C̃ the diameter of which lies on the upper imaginary axis of
the complex z-plane, with its lower end at the origin, z = 0, and its upper end at the point
z = 2i/ω. This clearly entails that, if the solution w(z) so obtained is holomorphic (or in
fact just meromorphic) inside the disc C encircled by C̃, the corresponding solution g(t) is
periodic in t with period T . Likewise, if the solution w(z) is not meromorphic in C but the
only singularity (other than poles) it features inside C is a rational branch point, namely a
singularity at z = zb (with |zb − iω| < 1/ω) where the solution w(z) behaves proportionally to
(z−zb)

p/q with p, q two coprime integers (and, say, q positive, q = 1, 2, . . .), then clearly the
corresponding solution g(t), considered as a function of the real variable t , is again periodic,
but now with period T̃ = q T (because associated to this branch point is a cut that gives access
to a q-sheeted Riemanian surface, hence by encircling it q times one gets again back to the
point of departure).

Hence the importance of ascertaining the nature of the singularities ofw(z). To this end we
note first of all that, because of the structure of the right-hand side of the nonlinear ODE (4.2),
at any singular point z = zb the solution must take the value

w(zb) = s λ s2 = 1 (4.5)

since only at such values ofw the nonlinear ODE (4.2) can develop a singularity. And secondly,
to analyse the type of singularity featured by a solution w(z) of the ODE (4.2) we turn this
ODE into a recursion by writing

(j+1)w′′ = (j)w′2(2 (j)w + 1)/((j)w2 − λ2) j = 1, 2, . . . (4.6)

setting moreover (consistently with (4.5))
(0)w(z) = sλ + c(z − zb)

γ (4.7a)

which clearly also entails
(0)w′(z) = cγ (z − zb)

γ−1 (4.7b)
(0)w′′(z) = cγ (γ − 1)(z − zb)

γ−2 (4.7c)
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with the constants c and (especially) γ to be determined a posteriori so that the leading
behaviour of the subsequent terms yielded by the recursion (4.6) be consistent with (4.7).
Note that the requirement that (4.7a) be consistent with (4.5) entails the condition

Re (γ ) > 0. (4.8)

Insertion of (4.7) in (4.6a), (4.6b) yields
(1)w′′(z) = c γ 2 [1 + (2sλ)−1](z − zb)

γ−2

×[1 + 2c(1 + 2sλ)−1 (z − zb)
γ ] [1 + c(2sλ)−1(z − zb)

γ ]−1 (4.9a)

(1)w′′(z) = c γ 2 [1 + (2sλ)−1](z − zb)
γ−2

[
1 +

∞∑
l=1

(1)αl(z − zb)
lγ

]
. (4.9b)

The definition of the coefficients (1)αl in (4.9b) is sufficiently obvious from (4.9a) not to require
explicit display.

We now require that the dominant term in the right-hand side of (4.9b) reproduce the
right-hand side of (4.7c). This entails no condition on the constant c, while it requires validity
of the relation

γ [1 + (2sλ)−1] = γ − 1 (4.10a)

which fixes the value of the exponent γ ,

γ = −2sλ. (4.10b)

For any given λ (note that the ODE (4.1) only contains λ2, hence λ is defined up to a sign) this
formula, (4.10b), together with (4.8), also fixes the value of the sign s, via the requirement

Re (sλ) < 0. (4.11)

We now integrate twice (4.9b) (with (4.10)), fixing the two integration constants via the
requirement that the dominant terms in the right-hand side of the resulting expressions, first of
(1)w′(z) and then of (1)w(z), reproduce the right-hand sides firstly of (4.7b) and then of (4.7a).
We thus get

(1)w(z) = sλ + c (z − zb)
γ

[
1 +

∞∑
l=1

(1)α̃l (z − zb)
lγ

]
(4.12a)

with
(1)α̃l = (1)αl (γ − 1) /

{
(l + 1)

[
(l + 1) γ − 1

] }
namely

(1)w(z) = sλ + c (z − zb)
γ +

∞∑
l=1

(1)βl (z − zb)
(l+1) γ (4.12b)

with (1)βl = c (1)α̃l , the exponent γ in these equations (4.12) being of course fixed by (4.10b)
with (4.11). Note that this expression, (4.12b), of (1)w(z) contains two a priori arbitrary
constants, namely zb and c, while the coefficients (1)βl are clearly determined (indeed, in
explicit form) in terms of these two constants (as well of course as of the parameter λ).

Insertion of this expression in (4.6) with j = 1 leads, via a completely analogous
integration procedure, to a completely analogous formula,

(2)w(z) = sλ + c (z − zb)
γ +

∞∑
l=1

(2)βl (z − zb)
(l+1) γ (4.12c)
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where the coefficients (2)βl are again uniquely defined in terms of the three constants zb, c and
λ (although no more in explicit closed form, but only via a recursive procedure yielding the
successive determination of the coefficients of power expansions).

It is thereby seen that by successive iterations, see (4.6), one arrives at the formula

(j)w(z) = sλ + c (z − zb)
−2sλ +

∞∑
l=1

(j)βl (z − zb)
−2 (l+1) sλ (4.13)

now valid for all values of j, j = 1, 2, . . . (and note that in this formula we have also replaced
the exponent γ with its expression (4.10b)); and by taking the limit j = ∞ (whereby (4.6)
coincides with (4.2), leading to the identification (∞)w(z) = w(z)) we arrive finally at the
following expression for the solution w(z) of (4.2) having a singularity at z = zb:

w(z) = sλ + c (z − zb)
−2sλ +

∞∑
l=1

βl (z − zb)
−2 (l+1) sλ. (4.14)

As entailed by its derivation, this expression, (4.14), contains the two arbitrary constants zb and
c (hence it qualifies as an expression of the general solution of the second-order ODE (4.2)),
while the coefficients βl appearing in its right-hand side are uniquely determined in terms of
these two constants (and of the parameter λ featured by the ODE (4.2)) via a constructive
procedure (based on the insertion of this ansatz (4.14) into (4.2)) that allows in principle to
determine as many of these coefficients as one wishes (sequentially for l = 1, 2, . . .), although
it does not provide a closed form expression for them. Let us also recall that the sign s

must be chosen consistently with the condition (4.11), which is indeed essential to ensure the
consistency of (4.14) with (4.5), as well as the presumed validity of (4.14) as a representation
of the solution of (4.2) in the neighbourhood of z = zb.

This finding allows to conclude (although it does not quite prove) that at the singular point
z = zb the solution w(z) of (4.2) possesses a branch point characterized by the exponent 2 λ,
with λ uniquely determined by the parameter λ 2 featured by the ODE (4.2) via the additional
requirement that Re (λ) be positive, Re (λ) > 0 (entailing, in the formulae written above, the
assignment s = −1, see (4.11)); with the consequential implications detailed above as regards
the periodicity properties of the corresponding solution of (4.1).

These conclusions are confirmed by the explicit general solution of (4.2) which
(consistently with the results of section 3) reads

w(z) = −λ (1 − u) / (1 + u) (4.15a)

u = (A z − B)2λ (4.15b)

with A, B two arbitrary constants. Indeed this formula, (4.15), is clearly consistent with the
expansion (4.14), and of course it implies zb = B/A as well as c = 2 λA2λ (where we are
again assuming that Re (λ) is positive, Re (λ) > 0).

Let us end by noting that the analysis given above gets into some ambiguity if λ2, see (4.1)
and (4.2), is real and negative, entailing that λ is imaginary, hence that Re (λ) cannot be chosen
positive because it vanishes, Re (λ) = 0. This is indeed—up to trivial notational changes—the
case that is singled out in [3] (see the very first equation of chapter XIV) as example of an
equation whose solution possesses an essential singularity which is ‘movable’, i.e. located
at the a priori arbitrary position z = zb = B/A, see (4.15) (although I would rather say it
possesses there a branch point with purely imaginary exponent).
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